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Abstract

We prove that the surface gravity of a compact non-degenerate Cauchy horizon

in a smooth vacuum spacetime, can be normalized to a non-zero constant. This

result, combined with a recent result by Oliver Petersen and István Rácz, end up

proving the Isenberg-Moncrief conjecture on the existence of Killing fields, in the

smooth differentiability class. The well known corollary of this, in accordance with

the strong cosmic censorship conjecture, is that the presence of compact Cauchy

horizons is a non-generic phenomenon. Though we work in 3 + 1, the result is

valid line by line in any n + 1-dimensions.

1 Introduction

This article discusses the existence of Killing fields on smooth (i.e. C∞) time-orientable

smooth vacuum 3 + 1 - spacetimes (M; g) having a compact connected Cauchy horizon

C. To make the setup clear from the start, the horizon C is assumed to divide M into

two connected regions, one of which, H, is a globally hyperbolic spacetime having a

smooth closed three-manifold as a Cauchy surface. Such C is known to be always a

smooth [4], [6], [5], totally geodesic null hypersurface of M, ruled by null geodesics

[16]. We will assume throughout that C is non-degenerate, namely, that there is on it at

least one future or past incomplete null geodesic, (recall that an inextensible geodesic is

incomplete if it has finite affine length). The “future” direction is relabeled if necessary

so that at least an incomplete null geodesic points into it.

Cauchy horizons are rather unique and peculiar objects in the General theory of Rel-

ativity whose conceptual and theoretical significance can be hardly overlooked. Space-

times having Cauchy horizons contain regions that, in a general sense, cannot be pre-

dicted from the initial data over the Cauchy surface and therefore display properties

that typically conflict our intuition and the causal foundation of classical physics. This

behavior is explicit in well known examples, as in the Taub-NUT family [7], where some

vacuum solutions with the same initial data share their globally hyperbolic bulks but

differ (i.e. are non-isometric) beyond a Cauchy horizon. In other words, some globally

hyperbolic spacetimes can be extended beyond a Cauchy horizon in several inequivalent

ways. In this sense, causality beyond the horizon is lost. The literature about compact

Cauchy horizons is extense. For further examples, discussions and viewpoints we refer

the reader to [1], [15], [8] and references therein. Despite of all that, according to the
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strong cosmic censorship conjecture, Cauchy horizons are objects that should not exist

generically, more specifically: generic(1) smooth vacuum initial data should give rise to

unique inextensible maximal globally hyperbolic spacetimes, hence without any kind of

horizon, (see for instance Geroch-Horowitz in [2]).

In 1983 James Isenberg and Vincent Moncrief started a series of seminal investiga-

tions [9], [3], [10], [11] to demonstrate that smooth vacuum spacetimes with compact

Cauchy horizons, as those of the Taub-NUT vacuum solutions, always have a Killing field

[9]. As spacetimes with Killing fields are non-generic, a proof of the Isenberg-Moncrief

conjecture, (as we will call it from now on), would imply that (at least) compact Cauchy

horizons are non-generic objects either. Though still far from strong cosmic censorship

(because Cauchy horizons could be non-compact), a proof of the Isenberg-Moncrief

conjecture would provide further support to it.

Despite of the significant progress achieved in the series of works [9], [3], [10], and [11],

that showed in particular the existence of Killing fields for analytic vacuum spacetimes

with non-ergodic horizons(2), the general proof of the conjecture for smooth spacetimes

has been so far elusive. In this article we conclude the Isenberg-Moncrief program by

proving a missing technical point that together with recent breakthroughs by Petersen

and Rácz in [13] and by Petersen in [12] end up proving the conjecture in the smooth

differentiability class of vacuum spacetimes. We discuss all that in the following lines.

As in the beginning of the introduction, assume that (M ; g) is a time-oriented space-

time with a compact Cauchy horizon C, (hence, as said, C is a smooth null and totally

geodesic hypersurface). Assume for the moment too that that C is a Killing horizon,

that is, there exists a Killing field K on H, that when restricted to C is null, non-zero

and tangent to it. Under these hypotheses it is well known that ∇KK = κK where κ is

a constant known as the surface gravity (see [16], Ch. 12.5.). If κ 6= 0 then the horizon

is non-degenerate (see Proposition 2 below) and one can scale K if necessary to have,

∇KK = −K. (1.1)

Thus, a necessary condition for C to be a non-degenerate Killing horizon is the existence

of a smooth null vector field K over C satisfying (1.1). What is remarkable is that this

necessary property is also sufficient. For analytic spacetimes this fact was proved by

Isenberg and Moncrief already in [9] (it must be assumed that K is analytic too). For

smooth spacetimes instead it is the result of a new breakthrough by Petersen-Rácz in

[13]. Furthermore, also for smooth spacetimes, Petersen in [12] has shown that K also

extends to a smooth Killing field on a neighbourhood of C in the complement of H.

Thus, if (M ; g) is smooth, K extends to a smooth Killing field on both sides of C. We

summarize these last two results in the following Theorem.

Theorem 1 (Petersen-Rácz [13], Thm. 1.2; Petersen [12], Thm. 1.4.). Let (M ; g) be

a smooth time-orientable vacuum spacetime with a compact connected Cauchy horizon

C. Suppose that there exists a smooth null vector field K on C such that ∇KK = −K.

Then, K extends to a smooth Killing vector field K all over the globally hyperbolic region

H, and at least to a neighbourhood of the horizon, in the complement of H.

(1)Generic here means “on an open and dense set” of initial data.
(2)For the notion of ergodic horizon, that won’t play any role here, see [9]
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This article is devoted exclusively to proving the existence of such smooth vector

field K over C, tangent to the null generators and satisfying ∇KK = −K. After proving

that, the Isenberg-Moncrief conjecture in the smooth class of vacuum spacetimes follows

as a corollary to Theorem 1. For analytic spacetimes, Isenberg and Moncrief succeeded

in proving the existence of an analytic K in all possible scenarios they considered (de-

pending on the orbital type of the null generators), except when the horizon is ergodic

(see [9]). In all instances, the construction relied on a suitable implementation of a

so called “ribbon” argument. Our construction here also follows a ribbon argument,

however with certain new ingredients that we explain later. Contrary to the Isenberg

and Moncrief constructions of K, the analysis here is general and does not depend on

the orbital structure of the null generators.

Sometimes, the existence of K is phrased as saying that “the surface gravity can

be normalized to a non-zero constant” (see Def. 1.1 in [13]). We used this expression

inside the abstract.

We proceed now to explain below how to carry over the task of finding K. We begin

by establishing an equivalence that will turn out to be rather useful.

Proposition 2. If a non-necessarily smooth, null and nowhere zero vector field K̃ on

C satisfies

∇K̃K̃ = −K̃, (1.2)

then every future null geodesic is incomplete and for every p ∈ C, K̃(p) is the only future

null vector at p such that the null geodesic starting at p with velocity K̃(p), has affine

length equal to one.

Conversely, if all future null geodesics are incomplete, and if for every p in C we

define K̃(p) as the only future null vector such that the null geodesic starting at p with

velocity K̃(p) has finite affine length one, the the resulting vector field K̃ satisfies (1.2).

Note that if a non-necessarily smooth nowhere zero and null K̃ satisfies (1.2) then

K̃ is necessarily smooth (i.e. C∞) along the null generators, though of course not

necessarily smooth along the directions transversal to them. Let us see now the proof

of this equivalence.

Let K̃ be a non-zero vector field on C, tangent to the null generators and satisfying

(1.2). Let p be any point on C and let γ(s) be the null geodesic with γ(0) = p and

γ′(0) = K̃(p). Then γ′(s) = f(s)K̃(γ(s)) for some smooth f(s). Thus (1.2) implies

f ′ − f2 = 0 and γ′(0) = K̃(p) implies f(0) = 1. Hence f(s) = 1/(1 − s), proving that

the affine length of γ must be one. Then observe that if the geodesic γ(s) were to start

instead with a different velocity λK̃(p), with λ > 0 and λ 6= 1, then the affine length

would be 1/λ, hence different from one. We have then shown the direct implication of

the proposition. We prove now the converse. So suppose that all the future pointing

null geodesics on C are incomplete. Then, for any point p on C let K̃(p) be the only

future null vector at p such that the affine length of the inextensible null geodesic γ(s)

starting from p with velocity K̃(p) is equal to one. We will prove in what follows that

then (1.2) must hold, that is ∇K̃K̃ = −K̃. Again, let γ(s) : [0, 1) → C be the future

null geodesic on C such that γ(0) = p and γ′(0) = K̃(p). We claim that along γ(s) the
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vector field K̃ must adopt the expression,

K̃(γ(s)) = (1− s)γ′(s). (1.3)

Indeed, for any 0 ≤ s0 < 1, the geodesic starting from γ(s0) with velocity γ′(s0) has

obviously affine length equal to 1 − s0. Hence, the geodesic starting from γ(s0) with

velocity (1 − s0)γ′(s0) has affine length equal to one and (1.3) follows. We can now

compute,

∇K̃(γ(s0))
K̃ = (1− s0)∇γ′(s0)((1− s)γ

′(s))
∣∣
s=s0

= −(1− s0)γ′(s0) = −K̃(γ(s0)), (1.4)

where we have used that ∇γ′γ′ = 0 because γ(s) is a geodesic and obviously ∇γ′s = 1.

This finishes the converse and therefore the proof of the proposition.

Proposition 2 suggests that, to show the existence of a smooth null and nowhere

zero vector field K on C satisfying (1.1), one could proceed as follows. First prove that

all future geodesics are incomplete. Then prove that the vector field K̃, defined at every

p as the only future null vector such that the null geodesic starting at p with velocity

K̃(p) has affine length equal to one, is indeed smooth. By Proposition 2, such vector

field K̃ will be the smooth field K that we are looking for. This is the strategy that we

will follow. The vector field K̃ will be called the candidate vector field (candidate to be

the vector field K).

Based on the discussion above, the Isenberg-Moncrief conjecture in the smooth class

will follow as a corollary of the next theorem (that will be our main theorem) and

Theorem 1.

Theorem 3 (Main Theorem). Let C be a compact connected and non-degenerate Cauchy

horizon on a time orientable smooth spacetime. Then, all the future null geodesics of C
have finite affine length. Furthermore, the candidate vector field is smooth.

Let Z be a smooth future null and nowhere zero vector field defined on an open set

U ⊂ C of a local chart ψ−1 : U → R3. Let L(x, y, z) be the affine length of the null

geodesic starting at ψ(x, y, z) with velocity Z(ψ(x, y, z)). If L <∞, then the candidate

vector field K̃ adopts the local presentation,

K̃(ψ(x, y, z)) = L(x, y, z)Z(ψ(x, y, z)), (1.5)

Hence, if L(x, y, z) is furthermore smooth, then K̃ will be smooth on U . This local

expression will be useful.

In basic terms, the ribbon argument exploits the following crucial fact: For any null

and nowhere zero vector field Z tangent to C and defined on an open set U of C, the

one-form ωZ on U defined by,

∇Y Z =: ωZ(Y )Z, (1.6)

is null-closed, that is,

dωZ(Z, Y ) = 0, (1.7)

for any Y tangent to C. This fact is due to the vacuum Einstein equations and a

proof of it in Gaussian null coordinates can be found in section E of [11], (coordinate
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independent proofs can be given too, (3)).

Suppose now that a global smooth future null and nowhere zero vector field Z on

C is given and fixed. Let ϕp(z) be the integral curve of Z, starting at p when z = 0

(ϕ′p(z) = Z(ϕp(z)). The orbits ϕp(z) are of course reparametrized future null geodesics.

Then, a direct (standard) computation, that we explain in section 3, gives,

L(p) =

∫ ∞
0

e
∫ ρ
0
ωZ(ϕ′p(z))dzdρ, (1.8)

for the affine length L(p) of the null geodesic starting at p with velocity Z(p). This affine

length can be a priori finite or infinite. Observe that this expression doesn’t depend

on which vector field Z is used. Now, suppose that α(λ), λ ∈ [0, 1] is a smooth curve

transversal to the null generators, and joining a point p0 to a point p. Then, for any

ρ > 0 the map,

Ψ : [0, 1]× [0, ρ]→ C, (1.9)

given by Ψ(λ, z) = ϕα(λ)(z), is a smooth immersion called the ribbon. In simple words,

the ribbon results after translating the graph of α by the flow of Z. This surface is of

course ruled by null generators because Z is null. This fact and (1.7), show that the

integral of dωZ on the surface is zero(4). Therefore, by Stoke’s theorem, the integral

of ωZ along the boundary of the surface is zero too. We write this in the following

convenient form, ∫ ρ

0

ωZ(ϕ′p(z))dz = S(ρ)− S(0) +

∫ ρ

0

ωZ(ϕ′p0(z))dz, (1.10)

where S(ρ) is the integral of ωZ along the translation of α by the flow of Z, i.e. the curve

λ→ ϕα(λ)(ρ). When this expression is inserted inside the exponent in the integrand of

(1.8) we obtain,

L(p) =

∫ ∞
0

eS(ρ)−S(0)e
∫ ρ
0
ωZ(ϕ′p0

(z))dzdρ. (1.11)

As L(p0) is given by,

L(p0) =

∫ ∞
0

e
∫ ρ
0
ωZ(ϕ′p0 (z))dzdρ, (1.12)

these last two equations somehow represent a way of linking L(p) to L(p0). In particular,

if it is known that L(p0) < ∞, (i.e. if the future null geodesic from p0 is incomplete),

and S(ρ) is bounded for all ρ > 0, then L(p) < 0. This could be a way of proving the

required first step that all future null geodesics are incomplete, out of the information

that the horizon is non-degenerate, namely that there is at least one incomplete future

null geodesic. The problem here is that, if the curve α is translated by any globally

defined Z, then, unless some extra information comes into play, there is little chance to

prove boundedness of S because the curve λ→ ϕα(λ)(ρ) could get increasingly distorted

as ρ→∞. Proving the required step that all future null geodesics are incomplete (i.e.

proving that L < ∞) using this implementation of the ribbon argument, is not viable

and something different must be done. It is somehow intuitive that the key is to work

with ribbons where the “top” and “bottom” sides (curves) are a priori controlled.

(3)We are indebted to Oliver Petersen for showing us an unpublished intrinsic calculation.
(4)Actually the integral of the pull-back of dωZ to [0, 1]× [0, ρ]

5



To tackle this difficulty, in this article we introduce and make use of the notion

of horizontal geodesic and horizontal parallel transport that depend upon fixing any

smooth global distribution of two-planes transversal to the null directions (see Section

2). Then, briefly (see full details in the body of the article), horizontal geodesics are

curves whose velocity field is horizontally parallel and that is tangent to the two-planes

of the distribution. Now, fix any null, future, and nowhere zero smooth vector field X

on C. Let α be a horizontal geodesic starting at a point p0 and ending at a point p. This

horizontal geodesic is tangent to the distribution of two-planes and is thus transversal

to the null generators. One can then “horizontally transport” α along the integral curve

of X starting at p0. The key point of this process, proven in Proposition 6, is that the

orbit described by any point in α that we pick, is always a null curve with non-zero

velocity. Hence, the result of horizontally translating α is a ribbon whose “top” and

“bottom” are two horizontal geodesics, hence having controlled geometry. The vector

field Z used for the ribbon argument, is (essentially) the velocity field obtained while

transporting α. To end, and without entering into details that can easily be found in the

body of the text, the result of implementing the ribbon argument in this way is a local

presentation of the candidate vector field, as in (1.5), from which one can easily prove

the incompleteness of the future null geodesics (i.e. prove L <∞) and the smoothness

of the candidate vector field (i.e. prove the smoothness of L).

The notions of “horizontal geometry”, including the notion of horizontal geodesic

and horizontal exponential map are discussed in Section 2. The main theorem is treated

in the Section 3 and in Section 4 we prove the couple of propositions stated in Section

2, including Proposition 6.

2 The horizontal exponential map

Let p : TC → C be the tangent bundle of C, (points in TC are denoted as usual by

(p, v), with p(p, v) = p). Let p : N → C be the vector-bundle of null vectors tangent

to C. We call N the null bundle. Let p : H → C be any smooth distribution of two-

planes in TC, that we think as a vector bundle with two-dimensional fibers, such that

TC = N ⊕H. Having chosen H, we call it the horizontal bundle. The fibers of N and

H over p will be denoted by N(p) and H(p) respectively. Let π : TC = N ⊕H → H be

the natural projection (i.e. if u = v ⊕ w with u ∈ TpC, v ∈ N(p) and w ∈ H(p) then

π(p, u) = (p, w)).

A smooth vector field Y on C is said to be horizontal if Y (p) ∈ H(p) for all p ∈ C (i.e.

Y is a smooth section of H). Let ∇ be the space-time covariant derivative restricted to

C (recall that C is totally geodesic). Define the horizontal covariant derivative D on H

as follows: if X is a vector field on C and Y is a horizontal vector field, then,

DXY := π(∇XY ). (2.1)

This horizontal covariant derivative defines horizontal parallel fields over curves in the

usual manner: a horizontal vector field V : (a, b)→ H over a curve γ : (a, b)→ C (that

is V (s) ∈ H(γ(s)) for all s ∈ (a, b)), is parallel iff Dγ′V = 0. Given γ : [a, b] → C
and a vector v ∈ H(γ(a)) one can always parallel transport v along γ obtaining thus a

horizontal parallel field V over γ with V (a) = v. Observe that D is compatible with
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the spacetime metric g restricted to H, namely if Y and Z are horizontal vector fields,

and X is a vector field on C then,

X(g(Y, Z)) = g(∇XY,Z) + g(Y,∇XZ) = g(π(∇XY,Z) + g(Y, π(∇XZ)) (2.2)

= g(DXY,Z) + g(Y,DXZ). (2.3)

We assume from now on that H is endowed with the metric g.

A curve γ : (a, b) → C is said to be a horizontal geodesic if γ′(s) ∈ H(γ(s)) for all

s ∈ (a, b) and Dγ′γ
′ = 0. The following basic proposition on the existence of horizontal

geodesics will be proved in Section 4.

Proposition 4 (Existence and uniqueness). Given p ∈ C and v ∈ H(p), there is a

unique horizontal geodesic γ : (−∞,∞)→ C with γ(0) = p and γ′(0) = v.

Then we define the horizontal exponential map, in the usual manner.

Definition 5. The horizontal exponential map, is the map exp : H → C defined as,

exp (p, v) = γ(1), (2.4)

where γ(s) is the unique horizontal geodesic with γ(0) = p and γ′(0) = v.

The map exp will be of course smooth (it comes after solving a smooth ODE). The

next proposition states the only crucial (unsubstitutable) property of the horizontal

exponential map that we will need during the proof of the main theorem. Before it,

define a curve α : [a, b]→ C to be null if α′(s) ∈ N(α(s)) for all s ∈ [a, b].

Proposition 6 (Transport of horizontal geodesics). Let p ∈ C and v ∈ H(p), v 6= 0.

Let α : [a, b] → C be a null curve with nowhere zero velocity and α(a) = p, and let

V : [a, b]→ C be the parallel transport of v along α. Then the curve β : [a, b]→ C given

by β(s) = exp (α(s), V (s)) is a null curve with nowhere zero velocity.

We prove this proposition also in Section 4.

3 Proof of Theorem 3

Before going into the proof we mention two important preliminary facts that will be

used.

(I) First, and as mentioned in the introduction, any null vector field Z on an open

set U of C gives rise to a one-form ωZ over U defined by,

ωZ(Y )Z = ∇Y Z, (3.1)

for any Y vector field on U . The form ωZ has the central property that its exterior

derivative is null in the sense that,

dωZ(Z, Y ) = 0, (3.2)

for any Y vector field on U . As commented earlier, this is the crucial property

allowing the Isenberg-Moncrief “ribbon” argument and will be used fundamentally.
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Note finally that if, Z = fX then,

ωZ(Z) =
Z(f)

f
+ ωX(Z). (3.3)

(II) Second, we mention how to compute the affine length of a null geodesic from a

non-affine parametrization of it. Let γ(s), γ : [0, L) → C be an inextensible null

geodesic. The affine length L being finite or infinite. Let s(ρ) : [ρ0,∞)→ [0, L) be

a smooth change of parameter so that now γ(s(ρ)) is a null geodesic possibly with

a non-affine parameterization. Letting γ′ = dγ/dρ and s′ = ds/dρ, we compute,

∇γ′γ′ = (
s′′

s′
)γ′ =: ω(ρ)γ′, (3.4)

Hence, having the expression for ω(ρ), the affine-length L is computed by,

L = s′(0)

∫ ∞
ρ0

e
∫ ρ
ρ0
ω(λ)dλ

dρ. (3.5)

We deduce then, that in order to have affine length L equal to one, it is necessary

and sufficient to have,

1

s′(0)
=

∫ ∞
ρ0

e
∫ ρ
ρ0
ω(λ)dλ

dρ <∞. (3.6)

This is equivalent to have
∫∞
ρ0
e
∫ ρ
ρ0
ω(λ)dλ

dρ <∞ and to start the geodesic γ(s) at

γ(0) with velocity equal to,

dγ

ds

∣∣∣∣
s=0

= (

∫ ∞
ρ0

e
∫ ρ
ρ0
ω(λ)dλ

dρ)
dγ

dρ

∣∣∣∣
ρ=ρ0

. (3.7)

We will use this expression to given an explicit (local) presentation of the candidate

vector field, that will be proved to be smooth.

Finally, note that if X is a nowhere zero null vector field and γ′(ρ) = f(ρ)X(γ(ρ))

for some smooth f(ρ) > 0, then,

ω =
f ′

f
+ ωX(γ′), (3.8)

(compare this with (3.3)).

We introduce now additional notation.

During the proof, B(0, r) ⊂ R2 will denote the open ball of radius r > 0 and centered

at the origin. In R2 we use coordinates (x, y).

It turns out that in order to parameterize incomplete geodesics in a controlled fashion

it will be convenient to fix an auxiliary smooth nowhere zero future null vector field X.

We fix such X from now on and reserve the letter X for it. Let X∗ be the one form

such that X∗(X) = 1 and X∗(Y ) = 0 for any horizontal vector field Y . The form X∗

is clearly smooth. Let ϕ : C × (−∞,∞)→ C be the smooth flow defined by X, namely,
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ϕ(p, z) is the solution to the ODE,

dϕ(p, z)

dz
= X(ϕ(p, z)), ϕ(p, 0) = p, (3.9)

hence with z the parameter of the integral curves of X.

Finally we let p : E → C be the bundle of orthonormal frames of H. Points in E

are denoted by (p, {e1, e2}) with {e1, e2} an orthonormal basis (frame) of H(p). Given

(p, {e1, e2}) we denote by {e1(z), e2(z)} to the horizontal parallel transport of {e1, e2}
along the null curve z → ϕ(p, z).

Proof of Theorem 3. We begin explaining the main arguments of the proof. The proof

is divided in two obvious consecutive steps: (A) proving that all future null geodesics

have finite affine length, (B) proving that the candidate Killing vector field K̃ is smooth.

For (A) it will be enough to show that: (A’) there are uniform ε > 0 and δ > 0 such

that, if a future null geodesic from a point p0 is incomplete, then all future null geodesics

starting at any point in the uniform neighbourhood,

U(p0, ε, δ) = {exp(ϕ(p0, z), xe
0
1(z) + ye02(z)) : z2 < δ2, x2 + y2 < ε2}, (3.10)

are also incomplete, (above {e01, e02} is any frame in E(p0)). What is important here is

that ε and δ are independent on p0. Indeed, if we show (A’) then the set of points with

a null future incomplete geodesic will be open and closed, and thus (A) will follow from

the connectivity of C. Now, to prove (A’), but also for the proof of the step (B), it will

play a simple but important role the map,

(x, y, z)→ exp(ϕ(p0, z), xe
0
1(z) + ye02(z)), (3.11)

that we used to define U(p0, ε, δ) in (3.10). Let us define it precisely in the next lines

and inspect its properties. We will end up explaining the argument behind the proof of

(B).

Given p0 and {e01, e02} ∈ E(p0), and given ε > 0 and δ > 0, define

ψ : B(0, ε)× (−δ,∞) ⊂ R3 → C, (3.12)

as,

ψ(x, y, z) = exp (ϕ(p0, z), xe
0
1(z) + ye02(z)). (3.13)

Now, it is not difficult to prove and we will do later, that if ε > 0 and δ > 0 are

small enough, then for any z1 ≥ 0 the restriction of ψ to B(0, ε)× (z1 − δ, z1 + δ) is an

embedding. So let us assume such ε and δ for the rest of the discussion. By Proposition

6, the curves,

z → ψ(x, y, z), (3.14)

are null with non-zero velocity, and hence are null geodesics with z a non-necessarily

affine parameter (this is the only place where Proposition 6 is used). Therefore, their

affine length can be calculated as was explained in (II). To make that explicit define

f(x, y, z) > 0 by,

d(x,y,z)ψ(∂z) =: f(x, y, z)X(ψ(x, y, z)), (3.15)
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and then define the one-form ω∗ over B(0, ε)× (−δ,∞) ⊂ R3 by,

ω∗ :=
df

f
+ ψ∗ωX , (3.16)

which is null-closed in the sense that dω∗(∂z,−) = 0 indeed by virtue of (I):

dω∗(∂z, Y ) =d(d ln f) + dψ∗ωX(∂z, Y ) (3.17)

=dωX(ψ∗(∂z), ψ∗(Y )) = 0, (3.18)

where in the last step we used that ψ∗(∂z) is null. (Just in passing, ω∗ is the pull-back

of the form ωZ defined by the (just) local field Z := dψ(∂z), see (I)). Thus, using (3.8)

we obtain

ω = ω∗(∂z), (3.19)

(see definition of ω in (3.4)) and then using (3.5) we find that the affine length L(x, y, z)

of the future null geodesic starting from ψ(x, y, z) with velocity Z(ψ(z, y, z)) takes the

expression,

L(x, y, z) =

∫ ∞
z

e
∫ ρ
z
ω(x,y,λ)dλdρ. (3.20)

With this expression at hand, the goal of (A’) is to prove that, if L(0, 0, 0) < ∞ then

L(x, y, z) < ∞ for all (x, y, z) with x2 + y2 < ε and z2 < δ2, whereas the goal of (B)

is to prove that, once (A’) is done, the following presentation of the candidate vector

field,

K̃(ψ(x, y, z)) = L(x, y, z)Z(ψ(x, y, z)), (3.21)

is smooth as a function of the smooth local coordinates (x, y, z). Note that as we

are restricting (x, y, z) to B(0, ε) × (−δ, δ) where ψ is an embedding, the vector field

Z(ψ(x, y, z)) is well defined and smooth over the patch ψ(B(0, ε) × (−δ, δ)). Thus, to

achieve (B) we need to show that: (B’) L(x, y, z) is smooth. To prove (A’) and (B’)

we need to link somehow L(x, y, z) to L(0, 0, 0). As was explained in the introduction,

linking L(x, y, z) to L(0, 0, 0) is what the ribbon argument does. We explain how it

works in the following lines.

As dω∗ is null (i.e. dω∗(∂z,−) = 0), Stokes theorem shows that the integral of ω∗

over the border of the rectangle R in R3 with vertices (0, 0, z), (0, 0, ρ), (x, y, ρ) and

(x, y, z), is zero (note that ∂z is tangent to R). We write this identity as,∫ ρ

z

ω(x, y, λ)dλ = S(x, y, ρ)− S(x, y, z) +

∫ ρ

z

ω(0, 0, λ)dλ, (3.22)

where S(x, y, z) is the integral of ω∗ along the segment from (0, 0, z) to (x, y, z) and

S(x, y, ρ) is the one from (0, 0, ρ) to (x, y, ρ). Then (3.22) transforms (3.20) into,

L(x, y, z) =

∫ ∞
z

eS(x,y,ρ)−S(x,y,z)e
∫ ρ
z
ω(0,0,λ)dλdρ. (3.23)

The important point here is that positive integrand e
∫ ρ
z
ω(0,0,λ)dλ in this integral is

integrable by virtue of L(0, 0, 0) < ∞. That is the desired link between L(0, 0, 0) and

L(x, y, z).

Now, we claim that (A’) and (B’) follow after proving that the function S(x, y, z)
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and all the partial derivatives of it of any given order are bounded all over B(0, ε) ×
(−δ,∞), (the bounds may depend on the order). Note also that the function ω(0, 0, z) =

ω∗(∂z)(0, 0, z) = X∗(∇XX)(ϕ(p0, z)) that appears also in (3.23) is uniformly bounded

and so are all of its derivatives.

In fact, assuming that property for S(x, y, z) that we will show later, then (A’)

follows from the bound,

L(x, y, z) ≤ e2‖S‖L∞L(0, 0, 0), (3.24)

whereas (B’) follows by a simple induction in the order of the derivatives after checking

that one can use Leibniz’s rule for differentiation under an improper integral sign. Let

us set the induction precisely. Define B to be the space of functions,

F (x, y, z) : B(0, ε)× (−δ,∞)→ R, (3.25)

and,

G(x, y, z, ρ) : B(0, ε)× {(z, ρ) ∈ R2 : ρ ≥ z ≥ −δ} → R, (3.26)

that are bounded and have all the derivatives of a given order also bounded. Then, the

induction to prove (B’) is set as follows:

If for all multi-index I = (i1, i2, i3), with |I| = i1 + i2 + i3 = k, we have,

∂|I|L(x, y, z)

∂i1x ∂
i2
y ∂

i3
z

= FI(x, y, z) +

∫ ∞
z

GI(x, y, z, ρ)e
∫ ρ
z
ω(0,0,λ)dλdρ, (3.27)

for some FI and GI in B, then for all multi-index I ′ = (i′1, i
′
2, i
′
3) with |I ′| = i′1+i′2+i′3 =

k + 1, we have,

∂|I
′|L(x, y, z)

∂
i′1
x ∂

i′2
y ∂

i′3
z

= FI′(x, y, z) +

∫ ∞
z

GI′(x, y, z, ρ)e
∫ ρ
z
ω(0,0,λ)dλdρ, (3.28)

for some FI′ and GI′ in B.

Note that for k = 0, equation (3.20) has the form (3.27) with F0 = 0 and G0 =

eS(x,y,ρ)−S(x,y,z). To prove the inductive step we need to calculate the derivatives care-

fully. First, the derivative of (3.27) with respect to x is,

∂

∂x

∂|I|L(x, y, z)

∂i1x ∂
i2
y ∂

i3
z

=
∂FI(x, y, z)

∂x
+

∫ ∞
z

∂GI(x, y, z, ρ)

∂x
e
∫ ρ
z
ω(0,0,λ)dλdρ, (3.29)

where the differentiation inside the integral is permitted by virtue of the fact that

∂x(GIe
∫ ρ
z
ω(0,0,z)dλ) is continuous but also bounded by the integrable function of ρ,

Ce
∫ ρ
z
ω(0,0,z)dλ. This is a pretty straightforward fact(5), that can be found for instance

in Theorem 15 in Chp 8 of [14]. A similar calculation holds for the derivative with

respect to y, whereas the derivative with respect to z is directly,

∂

∂z

∂|I|L(x, y, z)

∂i1x ∂
i2
y ∂

i3
z

=
∂FI(x, y, z)

∂z
−GI(x, y, z, z) (3.30)

(5)The precise statement is: if f(x, t) and ∂xf(x, t) are continuous, |f(x, t)| ≤ g1(t) and |∂xf(x, t)| ≤
g2(t) with

∫∞
t0
g1(τ)dτ <∞ and

∫∞
t0
g2(τ)dτ <∞, then the function x→

∫
t0
f(x, τ)dτ is differentiable

and its derivative is equal to
∫∞
t0
∂xf(x, τ)dτ .
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+

∫ ∞
z

(∂GI(x, y, z, ρ)

∂z
−GI(x, y, z, ρ)ω(0, 0, z)

)
e
∫ ρ
z
ω(0,0,λ)dλdρ. (3.31)

The proof of the inductive step thus follows. This would finish the proof of (A’) and

(B’) and hence so of (A) and (B).

We pass now to prove the claims that were left to be proved, namely (i) to show the

existence of ε > 0 and δ > 0 such that ψ : B(0, ε)×(−δ+z1, δ+z1)→ C is an embedding

for any z1 ≥ 0, and (ii) show that S(x, y, z) : B(0, ε)× (−δ,∞)→ R as well as any of its

derivatives are bounded (again, the bounds may depend on the order of the derivative).

We prove (i) first and then (ii). Both are basically the result of compactness. Before

the proof we make some analysis.

We define first a smooth map φ from E × B(0, 1) × (−1, 1) into C, (recall E is the

frame bundle ofH). Points in E×B(0, 1)×(−1, 1) are denoted by ((p, {e1, e2}), (x, y), z).

The map φ is given by,

φ((p, {e1, e2}), (x, y), z) := exp (ϕ(p, z), xe1(z) + ye2(z)). (3.32)

At any point P = ((p, {e1, e2}), (0, 0), 0) we compute,

dPφ(∂x) = e1, dPφ(∂y) = e2, dPφ(∂z) = X. (3.33)

Hence, at any P ∈ E there is 0 < ε < 1 and 0 < δ < 1 such that the map φ restricted

to {P} ×B(0, 3ε)× (−3δ, 3δ) is an embedding. By continuity there is a neighbourhood

UP such that at any P ′ ∈ UP the map φ restricted to {P ′} ×B(0, 2ε)× (−2δ, 2δ) is an

embedding. As E is compact then there are uniform 0 < ε < 1 and 0 < δ < 1, such that

at any P ∈ E the map φ restricted to {P}×B(0, 2ε)× (−2δ, 2δ) is an embedding. Also,

taking into account the third equation in (3.33), that we rewrite as X∗(dPφ(∂z)) = 1

for all P ∈ E ×{(0, 0)}× {0}, we can decrease ε and δ if necessary so that, in addition,

X∗(dφ(∂z)) ≥
1

2
, (3.34)

all over E ×B(0, 2ε)× (−2δ, 2δ). We fix such ε and δ from now on.

Consider now the following four smooth functions from E×B(0, 2ε)× (−2δ, 2δ) into

R,

ln(X∗(dφ(∂z))), ωX(dφ(∂x)), ωX(dφ(∂y)), and ωX(dφ(∂z)). (3.35)

Trivially, the four of them are bounded functions when restricted to the compact set

C := E×B(0, ε)× [−δ, δ] ⊂ E×B(0, 2ε)× (−2δ, 2δ). The same of course holds true for

any partial derivative of any order in x, y, and z. We state this as follows,

‖ ∂|I|h

∂xi1∂yi2∂zi3
‖L∞(C) ≤ c(|I|), (3.36)

where I a multi-index I = (i1, i2, i3), |I| = i1 + i2 + i3, and h is any of the four functions

(3.35). We will see now that these trivial bounds are ultimately all the necessary bounds.

We are finally are in position to prove (i) and (ii). The basic observation is that for

any z1 ≥ 0 the map ψ restricted to B(0, ε) × (z1 − δ, z1 + δ) is “equal” to the map φ
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restricted to {(ϕz1(p0), {e01(z1), e02(z1)})}×B(0, ε)× (−δ, δ), more precisely if we define,

χ : B(0, ε)× (−δ+ z1, δ+ z1)→ {(ϕz1(p0), {e01(z1), e02(z1)})}×B(0, ε)× (−δ, δ), (3.37)

by,

χ(x, y, z) = φ((ϕz1(p0), {e01(z1), e02(z1)}), (x, y), z − z1), (3.38)

then, ψ(x, y, z) = φ(χ(x, y, z)). This shows (i), namely, that for any z1 ≥ 0, the map

ψ restricted to B(0, ε) × (z1 − δ, z1 + δ) is an embedding. To show (ii) we proceed as

follows. First, as dχ(∂x) = ∂x, dχ(∂y) = ∂y and dχ(∂z) = ∂z, we deduce that,

ln(X∗(dψ(∂z)))

∣∣∣∣
(x,y,z)

= ln(X∗(dφ(∂z)))

∣∣∣∣
χ(x,y,z)

, (3.39)

ωX(dψ(∂x))

∣∣∣∣
(x,y,z)

= ωX(dφ(∂x))

∣∣∣∣
χ(x,y,z)

, (3.40)

ωX(dψ(∂y))

∣∣∣∣
(x,y,z)

= ωX(dφ(∂y))

∣∣∣∣
χ(x,y,z)

, (3.41)

ωX(dψ(∂z))

∣∣∣∣
(x,y,z)

= ωX(dφ(∂z))

∣∣∣∣
χ(x,y,z)

. (3.42)

It follows then from this and from (3.36) that,

‖ ∂|I|h̄

∂xi1∂yi2∂zi3
‖L∞(B(0,ε)×(−δ+z1,δ+z1)) ≤ c(|I|), (3.43)

where I is the multi-index I = (i1, i2, i3), |I| = i1 + i2 + i3, c(|I|) are the same constants

as in (3.36) and h̄ is now any of the four functions,

f := ln(X∗(dψ(∂z))), (3.44)

$x := ωX(dψ(∂x)), $y := ωX(dψ(∂y)), $y := ωX(dψ(∂z)). (3.45)

Finally, as these estimates are valid for any z1 ≥ 0, we obtain that the form,

ω∗ =
df

f
+ ψ∗ωX =

∂xf

f
dx+

∂yf

f
dy +

∂zf

f
dz +$xdx+$ydy +$zdx, (3.46)

is bounded and has all its derivatives of any order bounded over B(0, ε)×(−δ,∞) ⊂ R3.

This directly proves (ii) namely that S(x, y, z) and all its derivatives of any order are

bounded, as wished.

4 Proof of Propositions 4 and 6

In this section we prove Propositions 4 and 6.

Recall that a curve γ : (a, b)→ C is a horizontal geodesic if for all s ∈ (a, b),

γ′(s) ∈ H(γ(s)) and π(∇γ′γ′)(s) = 0. (4.1)

Proposition 7. Let p ∈ C and v ∈ H(p). Then, for ε > 0 sufficiently small, there

exists a unique horizontal geodesic γ : (−ε, ε)→ C with γ(0) = p and γ′(0) = v.
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Proof of Proposition 7. We make a local calculation. Let B be an embedded disc con-

taining p and transversal to the null directions that are tangent to the null geodesics

foliating C. For δ > 0 sufficiently small, the restriction of ϕ to B × (−δ, δ) is an

embedding (ϕ is again the flow generated by X, the vector field that we fixed in

Section 3). Let U = ϕ(B × (−δ, δ)). The open set U is foliated by the null orbits

{{ϕ(p, z) : z ∈ (−δ, δ)} : p ∈ B}. Let V be the quotient of U , and note that obviously

V is diffeomorphic to B. Let ξ : U → V be the projection. Any function f on V lifts

to a function f∗ on U by: f∗(p) := f(ξ(p)). Also, any vector field Y on V lifts to a

horizontal vector field Y ∗ on U by: Y ∗(p) ∈ H(p) and dpξ(Y
∗(p)) = Y (ξ(p)). Note that

for any function f and vector field Y on V we have, Y ∗(f∗) = (Y (f))∗. Also, note that

π([Y ∗, Z∗]) = [Y,Z]∗, (again π is the horizontal projection, see Section 2). Indeed, for

any function f on V we have,

π([Y ∗, Z∗])(f∗) = [Y ∗, Z∗](f∗) = (4.2)

= Y ∗(Z∗(f∗))− Z∗(Y ∗(f∗)) = (Y (Z(f))− Z(Y (f)))∗ = (4.3)

= ([Y,Z](f))∗. (4.4)

Let h be the degenerate metric on the horizon C. Such tensor is the restriction to

C of the spacetime metric g. As LXh = 0, (6), the metric h on U can be quotient to

a metric q on V . Note that 〈Y ∗, Z∗〉 = 〈Y,Z〉∗, where with some abuse of notation,

(that will be used below too), the first bracket corresponds to the degenerate metric h

(〈Y ∗, Z∗〉 = h(Y ∗, Z∗)) and the second to the metric q (〈Y,Z〉 = q(Y,Z)).

We show now that the covariant derivative on V defined by,

DY Z := dξ(π(∇Y ∗Z∗)) = dξ(DY ∗Z
∗), (4.5)

is indeed the Levi-Civita connection of q (in this formula D is the horizontal covariant

derivate on H, see Section 2). Note that though π(∇Y ∗Z∗) is well defined as a vector

field on U , it is not necessarily projectable to a vector field on V , so in principle (4.5)

may not be well defined. That it is indeed well defined will be clear in the following

calculation. By the standard formula, for any vector field W on V we have,

〈π(∇Y ∗Z∗),W ∗〉 =〈∇Y ∗Z∗,W ∗〉 = (4.6)

=
1

2

{
Z∗〈Y ∗,W ∗〉+ Y ∗〈W ∗, Z∗〉 −W ∗〈Y ∗, Z∗〉 (4.7)

− 〈[Z∗,W ∗], Y ∗〉 − 〈[Y ∗,W ∗], Z∗〉 − 〈[Z∗, Y ∗],W ∗〉
}
. (4.8)

Now,

Z∗〈Y ∗,W ∗〉 = Z∗〈Y,W 〉∗ = (Z〈Y,W 〉)∗, (4.9)

and similarly for the other two terms in (4.7). Also,

〈[Z∗,W ∗], Y ∗〉 = 〈π([Z∗,W ∗]), Y ∗〉 = 〈[Z,W ]∗, Y ∗〉 = 〈[Z,W ], Y 〉∗, (4.10)

(6)This is because LXh(Y,W ) = g(∇YX,W ) + g(∇WX,Y ) = g(ωX(Y )X,W ) + g(ωX(W )X,Y ) = 0.
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and similarly for the other terms in (4.8). Putting all together we obtain,

〈π(∇Y ∗Z∗),W ∗〉 =
1

2
{Z〈Y,W 〉+ Y 〈W,Z〉 −W 〈Y,Z〉 (4.11)

− 〈[Z,W ], Y 〉 − 〈[Y,W ], Z〉 − 〈[Z, Y ],W 〉}∗ = (4.12)

=〈∇Y Z,W 〉∗, (4.13)

where on the left hand side of (4.11) the covariant derivative is that of g and on (4.13)

the covariant derivative is that of q. Thus D is the Levi-Civita connection of q.

Let now γ(s) be a horizontal curve, namely γ′(s) ∈ H(γ(s)) for all s. Let α(s) =

ξ(γ(s)). Then, the calculation earlier shows that,

dξ(π(∇γ′γ′)) = Dα′α′. (4.14)

Hence, if γ(s) is a horizontal geodesic on U , then α(s) is a geodesic on V . So if

γ : (−ε, ε) → C is a horizontal geodesic on U then α(s) = ξ(γ(s)) is a geodesic on V

with α(0) = ξ(p) and α′(0) = dξ(v). Conversely, if α : (−ε, ε) → V is a geodesic on V ,

with α(0) = π(p) and α′(0) = dξ(v) then one can lift it to a unique horizontal curve

γ(s), with γ(0) = p, γ′(0) = v, that will be the horizontal geodesic we are looking

for.

Now note that |γ′|2′ = 〈γ′, γ′〉′ = 2〈∇γ′γ′, γ′〉 = 2〈π(∇γ′γ′), γ′〉 = 0, and thus the

norm of γ′ is constant. A standard argument using the compactness of C then shows

that any horizontal geodesic γ : (a, b) → C can be uniquely continued to a horizontal

geodesic γ : (−∞,∞)→ C, thus proving Proposition 4.

Let us move now to prove Proposition 6. Let us remain for some lines inside the

context of the proof just made of Proposition 7. Let p1 and p2 be two points in U

projecting into the same point, ξ(p1) = ξ(p2). Let v1 ∈ H(p1) and v2 ∈ H(p2) projecting

into the same vector, dξ(v1) = dξ(v2). Assume that the norms of v1 and v2 (which are

necessarily equal) is small enough so that the horizontal geodesics γ1 : [0, 1] → C and

γ2 : [0, 1] → C starting from p1 and p2 with velocities v1 and v2 respectively lie inside

U . Then, α1 = ξ(γ1) and α2 = ξ(γ2) are geodesics of V that have the same initial data

and are thus equal. This shows that ξ(γ1(1)) = ξ(γ2(1)), or, equivalently,

ξ(exp(p2, v2)) = ξ(exp(p1, v1)). (4.15)

Now, we claim that v2 is the horizontal parallel transport of v1 from p1 = ϕ(p1, 0) to

p2 = ϕ(p1, z2). Indeed if we let V (z) ∈ H(ϕ(p1, z)) be the unique horizontal field over

the null curve z → ϕ(p1, z) such that dξ(V (z)) = dξ(v1), and thus with V (0) = v1 and

V (z2) = v2, then the claim follows by the computation.

0 = π(LXV ) = π(∇XV −∇VX) = DXV − π(ωX(V )X) = DXV. (4.16)

In sum what we have shown is that, given p ∈ C and v ∈ H(p), there are ε(p) > 0 and

δ(p) > 0 such that, if we let V (z) be the horizontal parallel transport of v along the null

curve z → ϕ(p, z), then the family of horizontal geodesics β(z, s) : [0, ε] × [−δ, δ] → C,
given as,

β(z, s) = exp(ϕ(p, z), sV (z)), (4.17)
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all project into the same geodesic in V , that is,

ξ(β(z, s)) = ξ(β(0, s)). (4.18)

Therefore the curves, z → β(z, s) are all null, and the horizontal fields over them,

z → ∂sβ(z, s), are all horizontally parallel. Of course, if ε and δ are small enough then

∂zβ(z, s) 6= 0, for all z ∈ [0, ε] and s ∈ [−δ, δ]. Of course too one can chose ε(p) and

δ(p) such that if p′ is sufficiently close to p, then the same holds with ε(p′) = ε(p) and

δ(p′) = δ(p).

To prove Proposition 6 we will use what we know so far and make a simple continuity

argument. Let p ∈ C and v ∈ H(p), v 6= 0 but arbitrary. Let again V (z) be the

horizontal parallel transport of v along the null curve z → ϕ(p, z), for all z ∈ R. Let

β(z, s) = exp(ϕ(p, z), sV (z)), for all s ≥ 0. We will show that ∂zβ(z, s) is null and

different from zero for all z ∈ R and all s ≥ 0. This is clearly enough to prove the

proposition. Observe that z = 0 doesn’t play any particular role, so it is enough to

prove that that ∂zβ(0, s) is null and different from zero for all s ≥ 0.

Let s∗ be the supremum of the s1 > 0 for which there is ε = ε(s1) > 0 such that

for all s ≤ s1, we have: (i) the curves z → β(z, s) are null, and ∂zβ(z, s) 6= 0 for all

z ∈ [0, ε], (ii) the fields z → ∂sβ(z, s) along the curves z → β(z, s), are horizontally

parallel. By what was proved earlier we have s∗ > 0. If s∗ =∞ we are done. So assume

0 < s∗ <∞.

Let s1 = s∗ − δ, for some δ > 0 that we will chose soon. Let p1 = β(0, s1), v1 =

∂sβ(0, s1) and let β1(z, s) = exp(ϕ(p1, z), (s − s1)V1(z)) where V1(z) is the horizontal

parallel transport of v1 along z → ϕ(p1, z). Then, it is direct that from (i) and (ii) and

the fact that s1 < s∗, that there is a function z1(z) : [0, ε(s1)] → R, with z′1(z) 6= 0 for

which we have β(z, s) = β1(z1(z), (s− s1)V1(z1(z))), when s1 ≤ s < s∗ + δ.

But as shown earlier too, if δ > 0 is sufficiently small, there is ε(δ) > 0, such that:

(i’) the curves z → β1(z, s) are null with ∂zβ1(z, s) 6= 0 for all z ∈ [0, ε(δ)], (ii’) the field

z → ∂sβ1(z, s) along the curves z → β1(z, s), are horizontally parallel.

It follows from the paragraphs above that for z ∈ [0, ε(s1)] and for s in the interval

s1 = s∗−δ < s < s∗+δ we have ∂zβ1(z, s) 6= 0, hence ∂zβ(z, s) = ∂zβ1(z1(z), s−s1)z′1(z)

is null and different from zero, and, furthermore, ∂sβ(z, s) = ∂sβ1(z1(z), s − s1) is

horizontally parallel. We reach thus a contradiction, having assumed s∗ < ∞. Thus

s∗ =∞ and the Proposition 6 is proved.
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